

# Chemical Looping Technology for Hydrogen Production: Commercialization Prospect

### L. S. Fan

# Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, Ohio 43210

**Ohio Hydrogen Technology Forum** 

June 6, 2025

- World population  $\rightarrow$ 10 • **bn** by 2050, requiring **15% higher energy**
- Low-carbon energy • technologies
- Three main • technologies that have 400 been identified to curb climate change to 2°C 200 by 2050 are Carbon Capture and Storage, Hydrogen, Biofuels
- **Chemical Looping:** a ۲ promising technology for reducing CO<sub>2</sub> emissions

Global energy mix Quadrillion Btu 800



\* Includes hydro, wind, solar, and geothermal



Total

2050

**IPCC** Likely

Below 2°C Avg

Ref: ExxonMobil Energy Outlook



# **CO<sub>2</sub> Capture from Fossil Energy**

**Technological Solutions** 



THE OHIO STATE UNIVERSITY

Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D., International Journal of Greenhouse Gas Control. 2008.





CERTAL SOCIETY CFCHEMISTRY Publishing Journals, books and databases

As featured in Journal of Materials Chemistry A, Advance Article, 2017 DOI:10.1039/C7TA04228K

Showcasing a new approach on improving the reactivity of iron oxide oxygen carriers using a very small concentration of the lanthanum dopant by Professor Liang-Shih Fan's research group at the Ohio State University.

Title: Improved cyclic redox reactivity of lanthanum modified iron-based oxygen carriers in carbon monoxide chemical looping combustion

Oxygen carriers are required to have high reactivity and recyclability with low cost. A very low concentration of the lanthanum dopant can dramatically increase the reactivity of oxygen carriers in chemical looping combustion with carbonaceous fuels by reducing the reaction barriers. This methodology provides substantial performance improvements of oxygen carriers that are relatively simple to fabricate, and it will have an impact on chemical looping particle design and modification.



### **Redox Chemical Looping Technology**

**Metal Oxide as Oxygen Carrier** 



Luo, S., Zeng, L., Fan, L.-S., Annual Review of Chemical and Biomolecular Engineering. July 2015.

THE OHIO STATE UNIVERSITY

Chung, E.Y., Wang, W.K., Alkhatib, H., Nadgouda, S., Jindra, M.A., Sofranko, J.A., Fan, L.-S. 2015 AIChE Spring Meeting. April 2015. Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S.M., Steinfeld, A. Science. 2010.

### **History of Redox of Chemical Looping Technology development**

| Technologies   | Bergmann Process                                     | Lane Process &<br>Messerschmitt<br>Process | Lewis and<br>Gilliland<br>Process | IGT HYGAS<br>Process               | CO₂ Acceptor<br>Process |
|----------------|------------------------------------------------------|--------------------------------------------|-----------------------------------|------------------------------------|-------------------------|
| Time           | 1897                                                 | 1910                                       | 1950s                             | 1970s                              | 1970s                   |
| Looping Media  | MnO <sub>2</sub> /MnO/Mn <sub>2</sub> O <sub>3</sub> | Fe/FeO/Fe <sub>3</sub> O <sub>4</sub>      | Cu <sub>2</sub> O/CuO             | FeO/Fe <sub>3</sub> O <sub>4</sub> | CaO/CaCO <sub>3</sub>   |
| Reactor Design | Blast Furnace                                        | Fixed Bed                                  | Fluidized Bed                     | Staged Fluidized<br>Bed            | Fluidized Bed           |



The Ohio State University



**Lewis and Gilliland Process** 



Bergmann, F. German Patent 29,384, 1897; Messerschmitt, A. U.S. Patent 971,206, 1910.; Lane, H. U.S. Patent 1,078,686, 1913.

Dobbyn, R.C., Ondik, H.M., et al. U.S. DOE Report DOE-ET-10253-T1, 1978.

Lewis, W.K., Gilliland, E.R. U.S. Patent 2,655,972, 1954. Institute of Gas Technology. U.S. DOE Report EF-77-C-01-2435, 1979.



#### Multi-Scale, Multiphase Technology Development Approach Powder Technology 439 (2024) 119654; LS Fan et al., Reactor scale (m)

**Powder Technology** 439 (2024) 119654; LS Fan et al., "Multiphase Entrepreneurship: An Academic Reflection"



### Molecular scale (Å)

Surface chemistry, e.g., how chemical bonds are formed and cleaved. reaction mechanism, energetics, charge flow Cambr Wiley/AIChE 2010



### Particle, Droplet or Bubble scale

#### (µm~mm)

external/internal diffusion, reaction, size and shape design Adsorbed reactant Catalyst particle Adsorbed product **Cambridge University Press 2017 Bulk fluid** Butterworth, 1990 Pore fluid CHEMICAL LOOPING PARTIAL OXIDATION

LIANG-SHIH FAN

### mass transport **Counter-current: Full Combustion** Depleted Air `....**⊳** CO<sub>2</sub> Reduce Fuel Active sites Fe/FeO Cambridge University **Press 1998 Principles** of **Gas-Solid Flows**

Liang-Shilt Fan and Chao Zho

coupling of momentum, heat,

### System scale (> 100m)

Chemical Looping H<sub>2</sub> Process system



#### Butterworth, 1989



#### **Cambridge University Press 2021**





Applied Energy, 2016, 165, 183

Fuel, 2013, 104, 561



### **Metal Oxide Redox Chemistry**

 $H_2 + O^{2-} \rightarrow H_2O + 2e^{-}$ 

 $0.5O_2 + V_0 \rightarrow O^{2-} + 2h^{-}$ 





### **Oxygen Carrier Nanoparticles - Fe<sub>2</sub>O<sub>3</sub>@SBA-15**



 $Fe_2O_3$  nanoparticles@SBA-15 has a high CO selectivity of ~100%, as well as a high reactivity, which is 66% higher than  $Fe_2O_3$  particles.



### Chemical Stability of OSU Oxygen Carrier – 3000 Redox Cycles

Both reactivity and strength (120 MPa) are sustained over 3000 redox cycles at 1000 °C with constant particle size of 1.5 mm



Latest results also indicates sustained physical and chemical stability at 1100 °C over 900 redox cycles



#### THE OHIO STATE UNIVERSITY

Fan, L.-S., Zeng, L., Luo, S. AIChE Journal. 2015.



# **Reducer Design Concept: Combustion**



THE OHIO STATE UNIVERSITY

Fan, L.-S. Chemical Looping Systems for Fossil Energy Conversions. Wiley, 2010.



# **OSU 3-Reactor System for Hydrogen Production**





# Evolution of Ohio State University Redox Chemical Looping Technology







**CCR Process** 





THE OHIO STATE UNIVERSITY

Fan, L.-S., Zeng, L., Luo, S. *AIChE Journal*. 2015; Zhang, Y., L.-S. Fan et al, Applied Energy 282, 116065, 2021. Hsieh, T.-L., L.-S. Fan et al., Applied Energy 230:1060-1072, 2018.

# Calcium Chemical Looping Technology





OSU Carbonation-Calcination (1990s onwards) and Carbonation-Calcination-Hydration Looping Systems



### **ITRI Demonstration Plant (2015)**

H. Gupta, L. S. Fan, U.S. Patent 7.067,456 M. V. Iyer, H. Gupta, L. S. Fan: U.S. Patent 7,618,606 S. Ramkumar, L. S. Fan: U.S. Patent 8,496,909 R. Statnick, W. Wang, S. Ramkumar, L. S. Fan: U.S. Patent 8,512,661 N. Deshpande, N. Phalak, L. S. Fan: U.S Patent US 8,877,150

### **BrightLoop™** Technology Evolution & Commercialization



### BrightLoop<sup>™</sup> Project: Massillon, Ohio, USA

#### Natural Gas to Hydrogen

| ОИТРИТ                                 |                               |
|----------------------------------------|-------------------------------|
| H <sub>2</sub> from Natural Gas        | 1-5 tonnes/day                |
| H <sub>2</sub> production use          | Industrial,<br>Transportation |
| PROJECT DEVELOPMENT PLAN – App         | roximate Timeline             |
| Off-take agreement finalized           | 2Q 2024                       |
| Funding Commitment                     | 3Q 2024                       |
| Permits issued                         | 4Q 2024                       |
| Target first H <sub>2</sub> production | 1Q 2026                       |





# **OSU 3-Reactor System for Hydrogen Production**



#### 250 kW<sub>th</sub> Pilot demonstration at National Carbon Capture Center, AL

Operating parameters:

- 1. OC flow rate = 1320 kg/hr
- 2. Syngas inlet flow rate = 324.8 kg/hr
- 3. H2 outlet flow rate = 3.61 kg/hr





#### Gas profiles for pilot demonstration: Reducer (top) and Oxidizer (bottom)

Zhang, Y., L.-S. Fan et al, Applied Energy 282, 116065, 2021. Hsieh, T.-L., L.-S. Fan et al., Applied Energy 230:1060-1072, 2018.



# Biogas to H<sub>2</sub> conversion with CO<sub>2</sub> capture using chemical looping technology





- The chemical looping process can directly handle biogas with 0-50% CO₂ volume ratio.
- Achieves 100% CO<sub>2</sub> capture, making it a carbon-negative hydrogen production method.
- Oxidizer pressure set at 3 MPa eliminates the need for hydrogen compression, reducing auxiliary power consumption.
  - $H_2$  yield reaches 2.42 moles of  $H_2$  per mole of CH<sub>4</sub>, outperforming conventional methods.
- Cold Gas Efficiency (CGE) increases by 13-14% compared to conventional reforming processes.
- Effective Thermal Efficiency (ETE) improves by 15-20% demonstrating better energy utilization.

THE OHIO STATE UNIVERSITY

Kong, F., Swift, J., Zhang, Q., Fan, L. S., & Tong, A. (2020). Biogas to H2 conversion with CO2 capture using chemical looping technology: Process simulation and comparison to conventional reforming processes. Fuel, 279, 118479.



### Tata Steel licenses Ohio State Tech

Applying Professor L.-S. Fan's revolutionary chemical looping Redox Energy Recovery (RER) system to the steel industry will produce sizable economic and environmental benefits by producing sustainable hydrogen while reducing carbon emissions.

> William G. Lowrie Department of Chemical and Biomolecular Engineering

- Steelmaking: high contributions to GHG emissions
- Outlet gases contain  $H_2O$ ,  $CO_2$ , along with some amount of  $H_2$  and CO, typically flared
- Leveraging the reducing potential to generate H<sub>2</sub>.
- Seamless integration into existing steel production processes with minimal modifications to plant infrastructure
- Lower carbon intensity steel production
- An effort towards a decarbonized steel production with Tata Steel, India.
- Current ongoing efforts for commercialization.



#### **Co-generation of Electricity and Hydrogen Using OSU Chemical Looping Platform** ITC-CLWS: integrated turbine combined chemical looping water splitting







Standard CLWS process & Rankine cycle (case 1)

ess & Basic l' proces

Basic ITC-CLWS process (case 2&3)



Tax policies:

- 45Q The amount that a taxpayer may claim as a Section 45Q tax credit is computed per metric ton of qualified carbon dioxide captured and sequestered (\$27.61/MT CO<sub>2</sub> in 2023).
- 45V Credit is calculated based on the amount of CO2 equivalent per kilogram of hydrogen. Used to incentivize clean H2 production. Maximum tax credit can be \$3/kg H<sub>2</sub> if the process emits less than 0.45 kg CO<sub>2</sub> eq/kg H<sub>2</sub>.
- 3.  $CO_2$  emission tax Penalty for emitting  $CO_2$  into the atmosphere. It is considered to be \$37.7/MT  $CO_2$  in 2018.
- 4. For this study emission tax is considered instead of 45Q and 45V.





#### LCOH sensitivity diagrams for CLWS/ITC-CLWS Cases 0-5 (a-f)

| Case index                    | 0    | 1    | 2    | 3    | 4    | 5    | ATR  | SMR  |
|-------------------------------|------|------|------|------|------|------|------|------|
| Hydrogen Price, 2018<br>\$/kg | 1.48 | 1.48 | 1.42 | 1.44 | 1.37 | 1.78 | 2.23 | 1.61 |

LCOH comparison of Cases 0-5 and ATR, SMR with 103.2 ton/hr natural gas as feedstock LCOH: Levelized Cost of Hydrogen

Zhang, Q., Fan, L.-S., et al, International Journal of Hydrogen Energy <u>https://doi.org/10.1016/j.ijhydene.2023.07.300</u>, (2023).





#### OSU Chemical Looping Sulgen Process for Hydrogen Generation SIALE INIVERSITY



Production of H<sub>2</sub> instead of steam

 $(C_2 - C_4)$  stream

•  $\sim$ 99% reactive separation of H<sub>2</sub>S into H<sub>2</sub> from syngas, natural gas, acid gas and hydrocarbon

Significant reduction in processing units, cost and energy requirement

 $H_2S$  conversion into  $H_2$  over 12 sulfidation (T: 400°C) and regeneration (T: 950°C) cycles using iron-based sulfur carrier

Nadgouda SG, Jangam KV, Fan L.-S. Systems, methods and materials for hydrogen sulfide conversion. 2018 (62/716,705 (US), patent pending). Jangam and Fan et al., ACS Sustainable Chem. Eng. 2021 Jangam and Fan et al., Chem. Eng. J., 2021 Sassi and Gupta, Am. J. Environ. Sci.,2008

**Overall Reaction** 



Picture of the actual sub-pilot unit. B) Schematic of the experimental setup with accessories

- > 15 kW<sub>th</sub> unit has been built at OSU with the capacity to process 3.6 kg/hr of biomass
- > The unit has been successfully run for over 600 hours with 150 hours of continuous operation
- The system exhibits the ability to process various types of biomass feedstocks

Xu, D., Fan, L.-S., et al., Applied Energy, 222, 119-131 (2018).



### **Comparison with Conventional Process**

|                                | INDIRECT |       |
|--------------------------------|----------|-------|
| System                         | GASIFIER | BTS   |
| BIOMASS IN, AS RECEIVED (SHORT | 81464    | 70152 |
| TPD)                           |          |       |
| GASIFICATION CARBON EFFICIENCY |          |       |
| (%)                            | 69.7     | 89.4  |
| Syngas purity                  | 87.9     | 82.9  |
| Product (bbl/day)              | 49958    | 49957 |
| JET FUEL                       | 36944    | 36943 |
| Diesel                         | 8614     | 8613  |
| Nарнтна                        | 1178     | 1178  |
| LPG                            | 3222     | 3222  |
| NET POWER EXPORT (MW)          | 545.6    | 410.2 |
| THERMAL EFFICIENCY (%)         | 48.8     | 54.5  |

| System                         | Indirect Gasifier | BTS   |
|--------------------------------|-------------------|-------|
| Syngas compression duty        | 324               | 387.7 |
| COMBUSTOR COMPRESSION DUTY     | 96.5              | 87.4  |
| ASU ELECTRICITY DEMAND         | 114.6             | -     |
| Dryer Air Blower               | -                 | 2.7   |
| F-T SYNTHESIS NET EXPORT POWER | 966               | 887   |
| NET PLANT EXPORT POWER         | 545.6             | 410.2 |

- To validate the superior performance of BTS, it was compared with Indirect gasification for liquid fuel production through FT synthesis
- The results indicate that BTS has higher thermal and carbon efficiency than indirect gasification
- Furthermore, BTS achieves process intensification by eliminating the energy-intensive Air Separation Unit



#### <u>Applications in Energy</u> and Combustion Science <u>19 (2024) 100270</u>

**Enabling plastic waste** gasification by autothermal chemical looping with > 90 % syngas purity for versatile feedstock handling Eric Falascino<sup>1</sup>, Rushikesh K. Joshi<sup>1</sup>, Sonu Kumar, Tanay Jawdekar, Ishani K. Kudva, Shekhar G. Shinde, Zhuo Cheng, Andrew Tong, Liang-Shih Fan \* William G. Lowrie Department of

Chemical Engineering, The Ohio State University, United States





# **ECVT Commercial Applications**

60" Sensor



The Ohio State University

Wang, F., Yu, Z., Marashdeh, Q., Fan, L.-S. *Chemical Engineering Science*. 2010.
Warsito, W., Marashdeh, Q., Fan, L.-S. *Sensors Journal, IEEE*. 2007.
Marashdeh, Q. M., Teixeira, F. L., Fan, L.-S. *Sensors Journal, IEEE*. 2014.





### Electrical Capacitance Volume Tomography Videos for pulsation flow (G: 0.454 kg/m<sup>2</sup>s, L:21.7 kg/m<sup>2</sup>s)



Original video in normal speed ECVT reconstructed video in normal speed (50fps)





# Recurrent Neural Network (AI) Based Metal Oxide Attrition Risk Assessment on Arching in Chemical Looping Systems

- 9 different pressure transducers (ΔP1 9) were installed across the cold flow model
- Three different gas inputs: L-valve, Combustor and Reducer
- ITCMO particles with particle density of 2500 kg/m3 and particle diameter of 1.5 mm

#### **Experimental conditions:**

| Reducer   | 2 SCFM    |  |  |
|-----------|-----------|--|--|
| L-valve   | 2 SCFM    |  |  |
| Combustor | 1000 SLPM |  |  |





# **Recurrent NN model Setup**



- Layers in different time steps share the same weights
- Activation function in the dense layer is the rectifier function:

 $f(x) = \max(0,x)$ 

 Activation function in the output layer is the sigmoid function:

$$f(x) = \frac{1}{1 + e^{-x}}$$

• Loss function is binary cross entropy

$$\frac{-1}{T+1} \sum_{t=0}^{T} (1 - y_t) \log(1 - \hat{y}_t) + y_t \log(\hat{y}_t)$$



# **LSTM Scheme**



Fig. 5. Flow chart of the LSTM unit, referenced from Olah [33].



Accuracy

# **Training, Validation and Testing Results**

| [N1,N2;     | Training | Validatio<br>n | Testing Dataset |          |                     |              |             |
|-------------|----------|----------------|-----------------|----------|---------------------|--------------|-------------|
| N3]         | Loss     | Loss           | Loss            | Accuracy | Precision           | Recall       | F1<br>Score |
| [128,64;32] | 0.0361   | 0.0932         | 0.108           | 0.960    | 0.689               | 0.838        | 0.757       |
| [128,32;32] | 0.0380   | 0.0961         | 0.152           | 0.9399   | 0.559               | 0.896        | 0.688       |
| [64,32;32]  | 0.0374   | 0.0962         | 0.122           | 0.959    | 0.680               | 0.841        | 0.752       |
| [64,32;16]  | 0.0370   | 0.0931         | 0.141           | 0.948    | 0.607               | 0.861        | 0.712       |
| [64,16;16]  | 0.0364   | 0.0947         | 0.125           | 0.952    | 0.624               | 0.876        | 0.729       |
| [128;32]    | 0.0358   | 0.0907         | 0.119           | 0.951    | 0.621               | 0.882        | 0.729       |
| [128;16]    | 0.0342   | 0.0905         | 0.154           | 0.942    | 0.569               | 0.873        | 0.688       |
| TP + TN     |          | Procision -    | ТР              | Docall   | <i>TP</i>           | <b>E</b> 1 - |             |
| +TN + FP    | + FN     | $r_recision -$ | TP + FP         | Recult   | $-\overline{TP+FN}$ | r I ·        |             |

*TP: True Positive (correctly predict it happens); TN: True Negative; FP: False Positive (incorrectly predict it happens); FN: False Negative (incorrectly predict it did not happen); True Positive – correct prediction of bubbles (1); true negative – correct prediction of no bubbles (0)* 

Early stopping was used to choose weights corresponding to the lowest validation loss



# **Concluding Remarks**

- Chemical Looping concept and practice started 125 years with the Bergmann Process, followed by some pilot plant demonstrations along with hundreds of labs worldwide working on metal oxide redox materials and bench-scale processes for generation of various products. Despite its long history of development efforts, no commercial plant is yet in operation.
- Chemical Looping is an enabling platform technology with high Exergy efficiency for generation of a variety of products such as hydrogen, syngas, fuels and chemicals. It is particularly attractive for a process operation with decarbonization requirement.
- Chemical Looping multi-scale approaches encompassing four essential scale levels molecular, particle, reactor, and system - in synergism interaction propel successful chemical looping and other new energy and fuel technology development. Interfacing between the levels is of the area where exciting research continues to evolve.
- The first Chemical Looping commercial plant is expected to be in operation within one years by Babcock and Wilcox Company, a licensee of the technology from the Ohio State University based on unique moving-bed reducer configuration and iron-based metal oxide oxygen carrier for hydrogen production.