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World population 210
bn by 2050, requiring
15% higher energy

Low-carbon energy
technologies

Three main
technologies that have
been identified to curb
climate change to 2°C
by 2050 are Carbon
Capture and Storage,
Hydrogen, Biofuels

Chemical Looping: a
promising technology
for reducing CO,
emissions
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OHIO CO, Capture from Fossil Energy
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Figueroa, J.D., Fout, T., Plasynski, S., Mcllvried, H., Srivastava, R.D., International Journal
of Greenhouse Gas Control. 2008.
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As featured in Journal of Materials
Chemistry A, Advance Article, 2017
DOI:10.1039/C7TA04228K

Showcasing a new
approach on improving the
reactivity of iron oxide
oxygen carriers using a
very small concentration of
the lanthanum dopant by
Professor Liang-Shih Fan's
research group at the Ohio
State University.

Title: Improved cyclic redox reactivity of lanthanum modified iron-based oxygen carriers in carbon monoxide
chemical looping combustion

Oxygen carriers are required to have high reactivity and recyclability with low cost. A very low concentration of the
lanthanum dopant can dramatically increase the reactivity of oxygen carriers in chemical looping combustion with
carbonaceous fuels by reducing the reaction barriers. This methodology provides substantial performance
improvements of oxygen carriers that are relatively simple to fabricate, and it will have an impact on chemical
looping particle design and modification.



OHIO Redox Chemical Looping Technology
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Metal Oxide as Oxygen Carrier
CO, + H,0 Depleted Air

Combustion: Complete Fuel Oxidation
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History of Redox of Chemical Looping Technology development
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Bergmann, F. German Patent 29,384, 1897;

Messerschmitt, A. U.S. Patent 971,206, 1910.; Lane, H. U.S. Patent 1,078,686, 1913.
Dobbyn, R.C., Ondik, H.M., et al . U.S. DOE Report DOE-ET-10253-T1, 1978.

Lewis, W.K., Gillland, E.R. U.S. Patent 2,655,972, 1954.

Institute of Gas Technology. U.S. DOE Report EF-77-C-01-2435, 1979.



Fluid Catalytic Cracking (FCC)
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Multi-Scale, Multiphase Technology
Development Approach

Powder Technology 439 (2024) 119654; LS Fan et al.,
“Multiphase Entrepreneurship: An Academic Reflection”
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Surface chemistry, e.g., how

chemical bonds are formed and
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Chemical Looping H,
Process system

aaaaaaaaaa

oler . \
WY oo
W —J
| Cyclone Il
. J MR tube bundle integrated with the combustor
G5 Compressor
S f?i'E’ S ~Gas Cooling | S c_o-_-
» I ;
kkkkkk }—f(\,f «{hglouse and Water }—{ ] Pradict
) — ! |_Separation J -
- A Compressor
Heater £} | Gasseal | —-|Cu mmmmmm —
L - - L
Heat
H
[ ] :‘ > i o I Water || P
* Sulfur Removal [, —q\p—-—-| Ift Reactor l_. I
\ ) cformctJ ) . Separation J 1a "

uuuuuuuu

heater and coler symbols in

aaaaaaaaa

Butterworth,
1989

Cambridge University Press 2021

¥ DYNAMICS OF
¥  MULTIPHASE
FLOWS




Molecular scale (A)

Nanoparticle oxygen carrier adsorption energy (—

Reactor scale (m)

Flow structure of a 3D bubble column and 3D fluidized bed Sub-pilot and pilot scale demonstrations
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a)
Wake structure (asymmetric vortex pair) in a two-
dimensional system.

Total Energy from Main Boiler = 450 MWt
e Total Energy from CCR Process heat 309 MWt (around 600-650°C)
Framm integration = 405 MWt 96 MWt (600-850°C)

Applied Energy, 2016, 165, 183

Nature Reviews

Chemistry, 2018, 2, 349 International J. of Multiphase Flow, 1990, 16, 187 Fuel, 2013, 104, 561



% Metal Oxide Redox Chemistry
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Temperature programmed reduction (TPR)

Conversion rate during redox at 800°C

Oxygen Carrier Nanoparticles - Fe,O;@SBA-15
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Fe,O5 nanoparticles@SBA-15 has a high CO selectivity of ~100%, as well as a high reactivity, which is
66% higher than Fe,O; particles.

THE OHIO STATE UNIVERSITY




Chemical Stability of OSU Oxygen Carrier
B — 3000 Redox Cycles

Both reactivity and strength (120 MPa) are sustained over 3000 redox cycles at 1000
°C with constant particle size of 1.5 mm

Chung, C., Qin, L., Shah, V., and
Fan, L.-S., Energy & Environmental 3000
Science, 10, 2318-2323, (2017). l
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Latest results also indicates sustained physical and chemical
stability at 1100 °C over 900 redox cycles




Fluidized Catalytic Cracking (FCC) Coal Coimbuss
oal Combustion

Understanding Chemical Looping Process —
Reactor Configuration

Counter-current: Full Combustion Co-current: Full Gasification

Depleted Air Depleted Air

Solid Waste To Disposal
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%ﬁj}é Reducer Design Concept: Combustion
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Fluidized Bed v.s. Moving Bed
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Fan, L.-S. Chemical Looping Systems for Fossil Energy Conversions. Wiley, 2010.



OLIO OSU 3-Reactor System for Hydrogen Production
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o Depleted Air Pilot demonstration at National
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Evolution of Ohio State
University Redox
Chemical Looping
Technology

TGA Tests

Par:‘iclg Fixed Bed Bench Sub-Pilot CDCL Pilot Scale Demonstration for
Synthesis Tests Scale Tests Process Tests Hydrogen production
1993 1998 2001 2007 2010 to date

THE OHIO STATE UNIVERSITY



Calcium Chemical Looping
Technology
CaCoO,

Ca(OH),

OSU Carbonation-Calcination (1990s
1 onwards) and Carbonation-Calcination-
Hydration Looping Systems




BrightLoop™ Technology Evolution & Commercialization

2014 2017

Sub-Pilot
Laboratory and Hosted at National Carbon Coal Direct
Bench Scale The Ohio State Capture Center Chemical Looping
Experiments University Wilsonville, Alabama Barberton, Ohio

Innovation and Testing

© 2024 The Babcock & Wilcox Company. All rights reserved. BABCOCK & WILCOX

2025 2027

Medium Scale

Commercial
1-5tonnesH, 10-50 tonnes H,
perday perday
Massillon, Ohio

Detailed Engineering In Progress

Large Scale
Commercial

100-250tonnes H,
per day

Scale Up




BrightLoop™ Project: Massillon, Ohio, USA

Natural Gas to Hydrogen

OUTPUT

H, from Natural Gas 1-5 tonnes/day

Industrial,

H, production use Transportation

PROJECT DEVELOPMENT PLAN — Approximate Timeline

Off-take agreement finalized 2Q2024
Funding Commitment 3Q 2024
Permits issued 4Q 2024
Target first H, production 1Q 2026

© 2024 The Babcock & Wilcox Company. All rights reserved. BABCOCK & WILCOX
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OSU 3-Reactor System for Hydrogen Production

A

@
@

@ Heater

N e
H Secondary <
Primary Particle Thermal
Particle v Separator ~ Oxidizer
Separation Fines
10) H
Gas Analysis N; Q :'">m H
H € Gas Analysis
00 s
5 ) aty

Syngas 1 e 9 5 @ Cooler
r4
%ﬂalys’m N = ()
-: " N
b B : |5°D':::‘ci“° Compressor ;
-M: _ Ar—L{ )
5 5
Ny @ g
P
" S @ roane
g S
2 (Bumer)
N £
o
Windbox e
(@)

250 kW,,, Pilot demonstration at National
Carbon Capture Center, AL

Operating parameters:

1. OC flow rate = 1320 kg/hr

2. Syngas inlet flow rate = 324.8 kg/hr
3. H2 outlet flow rate = 3.61 kg/hr
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Gas profiles for pilot demonstration:
Reducer (top) and Oxidizer (bottom)

Zhang, Y., L.-S. Fan et al, Applied Energy 282, 116065, 2021.
Hsieh, T.-L., L.-S. Fan et al., Applied Energy 230:1060-1072, 2018.



OHIO Biogas to H, conversion with CO, capture using chemical looping
AME technology

:

* The chemical looping process can directly
handle biogas with 0-50% CO, volume ratio.

e Achieves 100% CO, capture, making it a
carbon-negative hydrogen production
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Effective Thermal Efficiency (ETE)

Low
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Pressure
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Biogas ——» O o 10w a0r  sox sk sox  eox need for hydrogen compression, reducing
_____ €0, vol% in Biogas auxiliary power consumption.
100% * H,yield reaches 2.42 moles of H, per mole of
fydrogen +— o CH,, outperforming conventional methods.
Steam w———p _§; X . - N . \:
g 60%
é +* Cold Gas Efficiency (CGE) increases by 13-14%
g 4% AT SMR-BTH compared to conventional reforming
= —&— MR-BTH
S 20% processes.
——CL-BTH . . . .
W v ccemunnumanen | ¢ EffEctive Thermal Efficiency (ETE) improves by
0% ' ' ' ' ‘ 15-20% demonstrating better energy
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Hydrogen (H,)

{

Waste Gases
From Steel Mill

Tata Steel licenses
Ohio State Tech

Applying Professor L.-S. Fan’s

Oxidized

revolutionary chemical looping Redox
Regenerator Energy Recovery (RER) system to the
steel industry will produce sizable
economic and environmental benefits by
Professor Liang-Shih Fan producing sustainable hydrogen while
OC \_ ) Story: https:/bitly/Tata_OhioState reducing carbon emissions.
Oxidized @ ﬁStea m (H O) THE OHIO STATE UNIVERSITY e William G. Lowrie Department of Chemical
gases 2 &P COLLEGE OF ENGINEERING and Biomolecular Engineering

Steelmaking: high contributions to GHG emissions

Outlet gases contain H,O, CO,, along with some amount of H, and CO, typically flared

Leveraging the reducing potential to generate H,.

Seamless integration into existing steel production processes with minimal modifications to plant infrastructure
Lower carbon intensity steel production

An effort towards a decarbonized steel production with Tata Steel, India.

Current ongoing efforts for commercialization.



(SDDE{IT% Co-generation of Electricity and Hydrogen Using OSU Chemical Looping Platform

UNIVERSITY

Standard CLWS process & Basic ITC-CLWS High-pressure ITC-CLWS
Rankine cycle process (case 2&3) processes (case 4&5)
(case 1)
Tax policies:
1. 45Q-The amount that a taxpayer may claim as a Section 45Q tax credit is computed per
metric ton of qualified carbon dioxide captured and sequestered ($27.61/MT CO, in , . - "_——o

2023).

2. 45V - Credit is calculated based on the amount of CO2 equivalent per kilogram of
hydrogen. Used to incentivize clean H2 production. Maximum tax credit can be $3/kg H, if
the process emits less than 0.45 kg CO, eq/kg H,.

3. CO, emission tax - Penalty for emitting CO, into the atmosphere. It is considered to be
$37.7/MT CO, in 2018.

4. For this study emission tax is considered instead of 45Q and 45V.

Fe,0,

Low Pressure

Combustor

Fe,0,
High Pressure

Ref: Hydrogen and Electric Power Cogeneration in Novel Redox Chemical Looping Systems: Operational Schemes and Tech-Economic Impact
Qiaochu Zhang, Andrew Tong, and Liang-Shih Fan

Industrial & Engineering Chemistry Research

DOI: 10.1021/acs.iecr.2c03834
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LCOH sensitivity diagrams for CLWS/ITC-CLWS Cases 0-5 (a-f)

Case index

4

ATR

SMR

$/kg

Hydrogen Price, 2018

1.48

1.48

1.42

1.44

1.37

1.78

2.23

1.61

LCOH comparison of Cases 0-5 and ATR, SMR with 103.2 ton/hr natural gas as

feedstock

LCOH: Levelized Cost of Hydrogen

Zhang, Q., Fan, L.-S., et al, International Journal of Hydrogen Energy https://doi.org/10.1016/].ijhydene.2023.07.300, (2023).
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' Direction of gas in reducer

I Direction of air

ﬁ Direction of OC particles

Hydrogen out

Tail Gas m

WGS

++ Natural gas to H, process

++ Cost of H, production = $1.34/kg

Cooler | <+ Six processes compared including
SMR, ATR

+* CO, capture in each case

4= Airin

Natural gas + Steam

Cooler

»{ Baghouse @ + Exhaust Air

Cooler

Cyclone

Gas Seal

SMR tube bundle integrated with the combustor

—

Reducer

<

Cooler

Water

Compressor

Compressor
Gas Cooling F\j
co,
Baghouse and Water
Product
Separation 'L/”l u
Compressor
@
I
Héat
I
Steam . Water
Shift Reacts PSA
eactors Separation
Cooler
Heat Recovery (including all H; Product
@ heater and cooler symbols in
the flowsheet as well as shift
Heater reactors)
Condensate

OC Particles in
(Fe;0s, Inert Material)

l I—b Exhaust Gas

4 N

Recycled Fuel Gas

Moving Bed
_—

Reducer

Natural Gas
—_—

l

OC Particles out
(Fe/Fepa470, Inert Material)

Stage injection strategy

MCLC-SMR: chemical looping
combustion with moving bed
reducer combined with steam
methane reforming

Zhang, Q., Joshi, R. and L.-S. Fan et al.,
International Journal of Hydrogen Energy
https://doi.org/10.1016/j.ijhydene.2023.07.30
0, (2023).
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otile] OSU Chemical Looping Sulgen Process for Hydrogen Generation
from Hydrogen Sulfide
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Overall Reaction
H,S > H,+0.5S,

- Sweeping gas and
sulfur vapors

— (To sulfur condenser)

¢—Furnace —  «—— Catalytic Section ——

Sulfidation Regenerator
Hydrogen g Sulfur

. Reactor Reactor Sweepin
sulfide ping
k / © 0 K / gas (N, /CO,)
S H

ZH,S + MS, > MS, +zH, w

MS, > MS, + 28
y>X

H,S
Tail 2 j
gas

Gas = . . . .
= ‘% >98% H,S conversion in Sulfidation step
o)
2 3 100
Hydrogen a2 )
I [ 10 I et [~ 4
— 1l H, o '%
Liquid Sulfur production = > 60 -
o]
# 4 . b 40 A
High value i Sweeping %
_ _ product gas = 5
Conventional H,S treatment using Chemical looping Sulgen process for H,
the Claus process - 0-
generation from H,S 1 2 3 4 5 6 7 8 9 10 11 12
- Redox cycle
Key advantages over the Claus process: H.,S conversion into H, over 12 sulfidation (T: 400°C) and

regeneration (T: 950°C) cycles using iron-based sulfur carrier

* Production of H, instead of steam
Nadgouda SG, Jangam KV, Fan L.-S. Systems, methods and materials

* ~99% reactive separation of H,S into H, from syngas, natural gas, acid gas and hydrocarbon ; \ ,
for hydrogen sulfide conversion. 2018 (62/716,705 (US), patent pending).
(CZ'C4) Stream Jangam and Fan et al., ACS Sustainable Chem. Eng. 2021

* Significant reduction in processing units, cost and energy requirement Jangam and Fan etal., Chem. Eng. J., 2021
Sassi and Gupta, Am. J. Environ. Sci.,2008
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Fe (1) \ Vs Biomass
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{T=1000-1050C |
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PR e

Pyrolysis Reaction:
Biomass >C+CH,

Solid-Solid Reaction:
Fe,0;+ C+ 2Ti0, = 2 FeTiO; + CO

Tar Cracking Reaction:
Fe,0; + CH, + Ti0,> CO + Hy+ FeTiO;

Char Gasification:
C+CO, > 2C0
C+H,0> CO+H,

OC Reduction Reaction
Fe,0, + CO/H, + Ti0,~ FeTiO, + CO,/H,0
FeTiOs+ CO/H, > Fe +TiO, + CO,/H,0 (il

Fe(O)/Fe(II)‘/

Biomass

MOVING BED

REDUCER

Syngas out

Euigd (1o >~~~ , Syngas for
Nt IO vl
, liquid fuel

Syngas

Depleted Air

Air in

Biomass to Syngas (BTS) Technology

Spent air y y
B
Fines
Baghouse
Biomas —
D Gas
(= | analysis
L1r| Thermo-
EEDID electric
Water 0| cooler
1
Syngas

FLUIDIZED BED
COMBUSTOR

Compressor

s 6

Picture of the actual sub
se

ilot unit. B) Schematic of the experimental
up with accessories

» 15 kW, unit has been built at OSU with the capacity to process 3.6 kg/hr of biomass
» The unit has been successfully run for over 600 hours with 150 hours of continuous operation
» The system exhibits the ability to process various types of biomass feedstocks

Xu, D., Fan, L.-S., et al., Applied Energy, 222, 119-131 (2018).



Comparison with Conventional Process
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S INDIRECT SYSTEM INDIRECT GASIFIER | BTS
YSTEM GASIFIER BTS
SYNGAS COMPRESSION DUTY 324 387.7
BIOMASS IN, AS RECEIVED (SHORT c 96.5 874
81464 70152 OMBUSTOR COMPRESSION DUTY : :
TPD) ASU ELECTRICITY DEMAND 114.6 -
GASIFICATION CARBON EFFICIENCY DRYER AIR BLOWER 3 2.7
69.7 89.4
(%) F-T SYNTHESIS NET EXPORT POWER 966 887
SYNGAS PURITY 87.9 82.9 NET PLANT EXPORT POWER 545.6 410.2
PrRoDuUCT (BBL/DAY) 49958 49957
JET FUEL 36944 36943 » To validate the superior performance of BTS, it was compared
with Indirect gasification for liquid fuel production through FT
DIESEL 8614 8613 .
synthesis
NAPHTHA 1178 1178
LPG 3227 3222 » The results indicate that BTS has higher thermal and carbon
efficiency than indirect gasification
NET POWER EXPORT (MW) 545.6 410.2
THERMAL EFFICIENCY (%) 48.8 54.5 » Furthermore, BTS achieves process intensification by

eliminating the energy-intensive Air Separation Unit
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(G: 0.454 kg/m?s, L:21.7 kg/m?s)

3D Concentration map Axial Cross-sectional maps

™R -— T

\\
' ' !

TN, TR AT T AR, TR, TTI m e KTSYT. AW, T
T | s o~ Hgous

—

ECVT Sensor |
location | §

Il - BB =

§ - 05 06 07 08 09 05 06 07 08 08

| — d'
....
-’

Original video in normal speed  ECVT reconstructed video in normal speed (50fps)

TECH
AIMAGING




Recurrent Neural Network (Al) Based Metal
Oxide Attrition Risk Assessment on Arching in
Chemical Looping Systems

» 9 different pressure transducers (AP1 —9) S
were installed across the cold flow model e A
* Three different gas inputs: L-valve,
Combustor and Reducer R )
* ITCMO particles with particle density of outlet
2500 kg/m3 and particle diameter of 1.5

mm

AP2 Reduc APGE
er

Experimental conditions:

Reducer 2 SCFM AP7

AP8

L-valve 2 SCFM AP9
AP3

Combustor 1000 SLPM L-valve gas inlet

L o o o B g
<

Combustor APS

v
«

<

AP4 + nir

Experimental Setup

Pan J. and L.-S. Fan et al., Powder Technology, 367, 266-276 (2020).



LSTM Unit
Hidden
States=M2

LSTM Unit
Hidden
States=N1

LSTM Unit
Hidden
States=N2

LSTM Unit
Hidden
States=N1

Recurrent NN model Setup

LSTM Unit
Hidden
States=M2

LSTM Unit
Hidden
States=N1

LSTM Unit
Hidden
States=M2

LSTM Unit
Hidden
States=N1

LSTM Unit
Hidden
States=N2

LSTM Unit
Hidden
States=N1

Layers in different time steps share the
same weights
Activation function in the dense layer is
the rectifier function:

f(x) = max(0,x)
Activation function in the output layer is

the sigmoid function:

1
1+e~—%

flx) =

Loss function is binary cross entropy

T
-1
T_th(;u — y)log(l — J;) + ylog(¥:)



LSTM Scheme

Ci+1
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Fig. 5. Flow chart of the LSTM unit, referenced from Olah [33].
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Training, Validation and Testing Results

Training Validatio Testing Dataset

[N1,N2; n

N3] .. F1
Loss Loss Loss Accuracy Precision Recall
Score
[128,64;32] 0.0361 0.0932 0.108 0.960 0.689 0.838 0.757
[128,32;32] 0.0380 0.0961 0.152 0.9399 0.559 0.896 0.688
[64,32;32] 0.0374 0.0962 0.122 0.959 0.680 0.841 0.752
[64,32;16] 0.0370 0.0931 0.141 0.948 0.607 0.861 0.712
[64,16;16] 0.0364 0.0947 0.125 0.952 0.624 0.876 0.729
[128;32] 0.0358 0.0907 0.119 0.951 0.621 0.882 0.729
[128;16] 0.0342 0.0905 0.154 0.942 0.569 0.873 0.688
TP + TN o TP TP 2
Accuracy = 4o TN + 7P + FN Precision = o575 Recall = 757N F1 = 1 Precision + 1/Recali

TP: True Positive (correctly predict it happens); TN: True Negative; FP: False Positive (incorrectly predict it happens); FN: False Negative
(incorrectly predict it did not happen); True Positive — correct prediction of bubbles (1); true negative — correct prediction of no bubbles (0)

Early stopping was used to choose weights corresponding to the lowest validation loss
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Concluding Remarks

* Chemical Looping concept and practice started 125 years with the Bergmann Process,
followed by some pilot plant demonstrations along with hundreds of labs worldwide
working on metal oxide redox materials and bench-scale processes for generation of
various products. Despite its long history of development efforts, no commercial plant
is yet in operation.

* Chemical Looping is an enabling platform technology with high Exergy efficiency for
generation of a variety of products such as hydrogen, syngas, fuels and chemicals. It is
particularly attractive for a process operation with decarbonization requirement.

* Chemical Looping multi-scale approaches encompassing four essential scale levels -
molecular, particle, reactor, and system - in synergism interaction propel successful
chemical looping and other new energy and fuel technology development. Interfacing
between the levels is of the area where exciting research continues to evolve.

* The first Chemical Looping commercial plant is expected to be in operation within one
years by Babcock and Wilcox Company, a licensee of the technology from the Ohio
State University based on unique moving-bed reducer configuration and iron-based
metal oxide oxygen carrier for hydrogen production.

36
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