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H2@Scale 

Illustrative example, not comprehensive
https://www.energy.gov/eere/fuelcells/h2-scale
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Economics of Electrolysis

Bryan Pivovar, Neha Rustagi, Sunita Satyapal, 
Electrochem. Soc. Interface Spring 2018 27(1): 47-52; 
doi:10.1149/2.F04181if

Target is Hydrogen Levelized 
Cost and H2 Shot targets 
($2/kg in 2026, $1/kg in 2031)

2 main cost drivers 
    Electricity prices
    Capital costs

At 50kWh/kg, 2¢/kWh = $1/kg

Need
    cheap electrons
    low capital cost

O&M is also important, but 
less understood
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Solar, Wind and Wind/Solar Electricity Generation

1 MW wind + 1 MW PV, Amarillo, TX1 MW PV, Daggett, CA 1 MW wind, Casper, WY
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Where will H2 be made most economically
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Energy flows of H2

B

Source: H2 Council
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Energy System Challenges

• Multi-sector requirements
o Transportation 
o Industrial
o Grid

• Renewable challenges
o Variable
o Concurrent generation

Over half of U.S. CO2 
emissions come from 

the industrial and 
transportation sectors
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Limitations of Variable Inputs

Curtailment will lead to an abundance of low value electrons, and 
we need solutions that will service our multi-sector demands

Denholm, P.; M. O'Connell; G. Brinkman; J. Jorgenson (2015) Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart. NREL/TP-6A20-65023
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Future energy system will be driven by wind and solar

https://www.hydrogen.energy.gov/do
cs/hydrogenprogramlibraries/pdfs/re
view17/tv045_ruth_2017_o.pdf



Renewable Electricity
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Analysis of projected marginal electricity costs by location

• Price structures directly influence 
optimal operating strategies.

• Explores the impact of “chasing” 
cheap electricity.

• Ignores the impact that electrolysis 
can have on electricity price 
structure.

2022 NREL cambium data
Mid-case with
100% decarb by 2035
Zone p28, Palo Verde, AZ

2022 NREL cambium data
Mid-case with
100% decarb by 2035
Zone p48, Amarillo, TX

Badgett A, Saha P, Brauch J, Pivovar B. SUBMITTED: Decarbonization of the electric power sector and 
implications for low-cost hydrogen production from water electrolysis 2023;Advanced Sustainable Systems.

Palo Verde, AZ Amarillo, TX
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Accomplishment: Hydrogen cost impacts

Location Marginal Pricing (LMP) for 
electricity can be used to explore 
operating strategies 

Both capital costs and electricity 
prices critical to HLC.

Alex Badgett, Mark Ruth, Bryan Pivovar, “Economic considerations for hydrogen production with a focus 
on polymer electrolyte membrane electrolysis,” Electrochemical Power Sources: Fundamentals, Systems, 
and Applications, 2022, 327-364. https://doi.org/10.1016/B978-0-12-819424-9.00005-7
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Accomplishment: Duty cycle implications for ASTs

LMP 
heatmaps 
can give 
insight into 
potential 
operating 
strategies

On-off cycle duration and frequency 
can help support AST development.
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Optimized operating and deployment strategies

• Today electrolyzers operate 
24/7 at rated output
– can’t chase cheap electrons or 

balance the energy system
– over-engineered for expensive 

electrons
– Risk mitigation for durability

• Start-stop vs. Idle
• Has different 

impacts/capabilities 
depending on electrolyzer 
type/ electrocatalysts

2022 NREL cambium data
Mid-case with
100% decarb by 2035
Year 2030 marginal costs
Zone p28, Palo Verde, AZ

PRELIMINARY
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Improving the economics of H2@Scale 

Use Potential 
MMT/yr 

Refineries & CPI 8

Metals 12

Ammonia 4

Synthetic 
Chemicals

14

Biofuels 1

Natural Gas 10
Light Duty Vehicles 57

Other Transport 17

Electricity Storage 28

Total 151

Early-stage research 
is required to evolve 
and de-risk the 
technologies.

Decreasing cost of H2 production
Leveraging of national 

laboratories’ early-stage R&D 
capabilities needed to develop 

affordable technologies for 
production, delivery, and end 

use applications.

https://www.hydrogen.energy.gov/pdfs/review18/tv045_ruth_2018_o.pdf

Preliminary

STORE
Improved Bulk Storage Technologies

Optimizing 
H2 storage 
and 
distribution



Use
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Use

• Transportation and Industry are strongest economic 
sectors (also difficult to decarbonize)

• Many of the processes are or could be electrochemical
• Difficult or impossible to fully electrify
• R&D needs are significant

– Fuel Cells (M2FCT), NH3, Steel, burners/turbineshttps://www.energy.gov/eere/fuelcells/h2-scale

https://www.nrel.gov/docs/fy21osti/77610.pdf



Move/Store
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Energy Transmission Infrastructure

• Hydrogen has a very limited infrastructure (due to scale and selective use).
– Current H2 prices dominated by storage and distribution (LDV CA) 

• Electricity and natural gas have extensive infrastructural investments.
• Similar maps, much different energy/cost, permitting challenges
• Hydrogen pipeline analogous to natural gas

https://www.energy.gov/eere/fuelcells/h2-scale
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Natural gas as the nearest H2 parallel

https://www.hydrogen.energy.gov/pdfs/review18/pd102_james_2018_p.pdf

• Hydrogen perhaps ~30% move expensive to 
move than natural gas. 

• ~1/3rd volumetric energy density, ~1/3rd 
viscosity.

• Additional materials compatibility limitations
• Particularly relevant at large scales and long 

distances
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Location of Generation vs. Demand

https://www.hydrogen.energy.gov/pdfs/review18/tv045_ruth_2018_o.pdf

• Hydrogen has a very limited infrastructure (due to scale and selective use). 
• Electricity and natural gas have extensive infrastructural investments.
• Similar maps, much different energy/cost, permitting challenges
• Hydrogen pipeline analogous to natural gas



Make
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H2NEW :  H2 from Next-generation Electrolyzers of 
Water

A comprehensive, concerted effort 
focused on overcoming technical barriers 
to enable affordable, reliable & efficient 
electrolyzers to achieve <$2/kg H2
• Launched in Oct 2020
• FY 21, 22: $10M/yr (PEM 75%, o-SOEC 

25%)
• FY 23-2?: $28M/yr ($12M PEM, $6M Liquid 

Alkaline, $10M O-SOEC)

Durability/lifetime is most critical, initial, 
primary focus of H2NEW
• Limited fundamental knowledge of degradation 

mechanisms, under appropriate operating 
strategies.

• $450M in electrolysis FOA awards under 
negotiation, much of which will be supported by 
H2NEW core lab team.

Leverages and connects to other DOE 
efforts

Clear, well-defined stack metrics to 
guide efforts.
Draft Electrolyzer Stack Goals by 2025

LTE PEM HTE

Capital Cost $100/kW $100/kW
Elect. Efficiency 
(LHV) 70% at 3 A/cm2 98% at 1.5 

A/cm2

Lifetime 80,000 hr 60,000 hr

Utilize combination of world-class 
experimental, analytical, and modeling 
tools

National Lab Consortium Team
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Stack Costs (PEM Centric to date)

Modeling of stack costs show 
strongest levers are:

1. Increased efficiency/ 
current density

2. Decreased PGM loading
3. Scale-up

Stack Targets Status Mid Ult.
Cell (A/cm2@1.9V) 2.0 2.5 3.0
Efficiency (%) 66 68 70
Lifetime (khr) 60 70 80
Degradation (mV/khr) 3.2 2.75 2.25
Capital Cost ($/kW) 350 200 100
PGM loading (mg/cm2) 3 1 0.5



H2NEW: Hydrogen from Next-generation Electrolyzers of Water 25     

Targeting Research Areas 

• Current density and catalyst 
loading are primary cost drivers

• Membrane thickness also 
enables increased current 
density

• Because low cost electrons are 
a requirement, lower premium 
is placed on efficiency.
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Thank you (and others)
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Iyer, Sunil Khandavalli, Scott Mauger, Samantha Medina, Woo Yeong Noh, Elliot Padgett, Makenzie Parimuha, Chance Parrish, Bryan Pivovar, Elias Pomeroy, Cheryl Reuben, Robin Rice, 
Daniela Ruiz, Meital Shviro, Sarah Shulda, Lauren Sittler, Chris Skangos, Colby Smith, Jennifer Sosh, Sam Ware, Jacob Wrubel, ​James Young, Jason Zack, Diana Zhang
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ANL Team Members: Frederick Agyapong-Fordjour, Rajesh Ahluwalia, Chris Arges, Ronald Emmons, Luke Johnson, Nancy N. Kariuki, Samuel J. Kazmouz, A. Jeremy Kropf, Zhao Li, Di-Jia 
Liu, Debbie Myers, Kaline Nascimento da Silva, Pietro Papa Lopes, Dennis Papadias, Jae Hyung Park, Jui-Kun (Michael) Peng, Matt Sweers, Jiaxin Wang, Xiaohua Wang​​, Xiaoping Wang

ORNL Team Members: David Arregui-Mena, Dave Cullen, Flavio Dal Forno Chuahy, Neus Domingo, Tomas Grejtak, Xiang Lyu, Shawn Reeves, Alexey Serov, Todd Toops, Hanyu Wang, 
Haoran Yu, Michael Zachman​

LANL Team Members: Tanvir Arman, Sergio Diaz-Abad, Kaustubh Khedekar, Yu Seung Kim, Siddharth Komini Babu, Daniel Leonard, Kui Li, Yuanchao Li, Sandipkumar Maurya, Jacob 
Spendelow

LLNL Team Members: Joel Berry, Tim Hsu, Namhoon Kim, Kyoung Kweon, Brandon Wood, Penghao Xiao

NETL Team Members: Harry Abernathy, William Epting, Yinkai Lei, Tianle Cheng, Tao Yang, Fei Xue, Greg Hackett

NIST Affiliate Team Members: Michael Daugherty, Daniel Hussey, David Jacobson, Jacob LaManna

SLAC: Nick Strange​​

University Collaborators: Jayson Foster, Svitlana Pylypenko (PI), Lonneke van Eijik, Max Shepherd, Genevieve Stelmacovic, ​Brian Gorman (CSM); Kara Ferner, Shawn Litster (PI), Fausto 
Pasmay (CMU); Devashish Kulkarni, Jack Todd Lang, John Stansberry, Cliff Wang, ​ Iryna Zenyuk (PI) (UCI); Scott Barnett, Peter Voorhees (NU), Xiao-Dong Zhou (UL-L), Paul Salvador 
(CMU), William Kent (CMU)

ASTWG Collaborators: Kathy Ayers (Nel Hydrogen), Nemanja Danilovic (Electric Hydrogen), Corky Mittelsteadt (Plug Power), Andrew Park (Chemours), Udit Shrivastava (Cummins), 
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LTE In-Person Meeting Napa, CA, February 21-23, 2024

HTE In-Person 
Meeting PNNL, 
March 4-6, 2024
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