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H2@Scale H2NEW
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[llustrative example, not comprehensive

https://www.energy.gov/eere/fuelcells/h2-scale
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Economics of Electrolysis HaNEW

U.S. DEPARTMENT OF ENERGY

Target is Hydrogen Levelized
Intermittent [ Other Costs Cost and H, Shot targets

Integration B Feedstock Costs. ($2/kg in 2026, $1/kg in 2031)
B Fixed O&M
B Capital Costs

2 main cost drivers

Electricity prices
Capital costs

At 50kWh/kg, 2¢/kWh = $1/kg

Need
cheap electrons
low capital cost
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¢2hWh | ¢1/kWh
S400/KW O&M is also important, but

66% | - e less understood
Electrolyzer

Bryan Pivovar, Neha Rustagi, Sunita Satyapal,
Electrochem. Soc. Interface Spring 2018 27(1): 47-52;

F16. 3. Techno-economic analysis of electrolyzer-based hydrogen production costs as a function of capacity factor,
doi:10.1149/2.F04181if

cost of electricity, capital cost, and efficiency compared to steam methane reforming (SMR), using H2A models.?s
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Solar, Wind and Wind/Solar Electricity Generation H2NEW

U.S. DEPARTMENT OF ENERGY
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Where will H2 be made most economically HaNEW

U.S. DEPARTMENT OF ENERGY

Hydrogen costs from hybrid solar PV and onshore wind systems in the long term.

USD/kgH,
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Energy flows of H2
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Global hydrogen and derivative interregional long-distance supply,’ millicn tons per annum

Suppliers Product carriers Offtakers
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1. Exeludes local produstion and distribution.

Next-generation Ele

Source: H2 Council




Energy System Challenges

« Multi-sector requirements | Over half of U.S. CO,
. Transportation emissions come from
- Industrial the mdus.trlal and
~ Grid transportation sectors

Denholm et al. 2008
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Limitations of Variable Inputs

Denholm, P.; M. O'Connell; G. Brinkman; J. Jorgenson (2015) Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart. NREL/TP-6A20-65023
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Curtailment will lead to an abundance of low value electrons, and
we need solutions that will service our multi-sector demands
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Future energy system will be driven by wind and solar

Accomplishment: Utilization of Renewable Resources

EIA 2015 current Required to meet demand of
consumption 60 MMT / yr Technical Potential
(quads/yr) (quads/yr) (quads/yr)
Solid Biomass 4.7 15 20
Wind Electrolysis 0.7 9 170
Solar Electrolysis 0.1 9 1,364
Prelimj
mi
Biomass Technical Potential Wind Technical Potential Solar Technical Potential
< Current R © current https://www.hyd rogen .enelrgy.gov/do
consumption consumption consumption cs/hydrogenprogramlibraries/pdfs/re
/ view17/tv045_ruth_2017_o.pdf
W Required to i Required to i Required to
meet demand meet demand meet demand
of 60MMT H2 of 60MMT H2 of 60MMT H2
Residual Residual Residual
Technical Technical Technical
Potential Potential Potential

Total demand including hydrogen is satisfied by =6% of wind,
<1% of solar, and =100% of biomass technical potential

hAL TIER EWA
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Renewable Electricity
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Analysis of projected marginal electricity costs by location

H2NEW

U.S. DEPARTMENT OF ENERGY

Price structures directly influence
optimal operating strategies.

Explores the impact of “chasing”
cheap electricity.

Ilgnores the impact that electrolysis
can have on electricity price
structure.

m Next-generation Electrolyzers of Water

Busbar costs ($/MWh)
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H2NEW

Accomplishment: Hydrogen cost impacts el
0.10 5.0
== Northern lllinois Hub 2017 \ = Capital cost $100/kW
0.08 === Southwestern Public Service 2017 45 = Capital cost $400/kW
=== Palo Verde 2017 === Capital cost $900/kW
== | Ong Beach 2018 40 \ [0 $100/kW HLC $0.1/kg price range
0.06 B ' $400/kW HLC $0.1/kg price range
< = $900/kW HLC $0.1/kg price range
- o
kY 5 3.0 \\\
—— ——
5 0.02- = —
Foy % 251
= 9
5 0.001 < )
3 g 2.0
-0.02 1 T ] e S—_— S
—0.04 1 1.0 - $100/kW HLC ($/kg): 1.54
$400/kW HLC ($/kg): 2.03
$900/kW HLC ($/kg): 2.67
-0.06 : : : : : ; : ; 0.5 - ' ' ' - - ; '
0 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Hour Hours of operation per year
Location Marginal Pricing (LMP) for Both capital costs and electricity
electricity can be used to explore prices critical to HLC.
Ope rat| ng Strateg |eS Alex Badgett, Mark Ruth, Bryan Pivovar, “Economic considerations for hydrogen production with a focus

on polymer electrolyte membrane electrolysis,” Electrochemical Power Sources: Fundamentals, Systems,
and Applications, 2022, 327-364. https://doi.org/10.1016/B978-0-12-819424-9.00005-7
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H2NEW

Accomplishment: Duty cycle implications for ASTs

Prlce ceiling: $0.021/kWh, Capacity factor: 25%
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Optimized operating and deployment strategies H2NEW
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3.0

* TOday eIectronzers Operate === Baseline on/off === 10% turndown
24/7 at rated output 2.5% turndown === 20% turndown
— can’t chase cheap electrons or 2.3 7 PRELIMINARY

balance the energy system

— over-engineered for expensive
electrons

2.0 A

— Risk mitigation for durability 15 -

e Start-stop vs. Idle

e Has different
impacts/capabilities

1.0

Hydrogen levelized cost ($/kg)

depending on electrolyzer 0.5 2022 NREL cambium data
Mid-case with
type/ electrocatalysts Year 203 marginal costs
Zone p28, Palo Verde, AZ
0-0 T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000

Hours operated at full H, output (hrs/yr)
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Improving the economics of H2@Scale H2NEW
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Early-stage research
is required to evolve
and de-risk the
technologies.

Decreasing cost of H, production
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2.77 R&D

Advances
1.05 1.95

1.14 156
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(=] 0.2 e .
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00 : 031 026
Capacity Factor 97% 40% 40% 09
Cost of Electricity | ¢66/kWh ¢2/KWh | ¢1/kWh ¢2/Wh | ¢1/kWh
Capital Cost | $400/kW $400/kW $100/kW
Efficiency (LHV) 66% 66% 60%
Electrolyzer SMR

MAKE MOVE use EENER

Refineries & CPI

+ s + Metals 12
- Ammonia 4
E_-. Synthetic 14

. Chemicals
Hydrogen Hydrogen storage, Hydrogen Biofuels 1
production compression, and :-.;- Natural Gas 10
technologies distribution, ;gt:t DTtYVhplt :
a-nd th’errnal Electricity Storage 28
In‘iEg@On Total 151

STORE

Improved Bulk Storage Technologies

Leveraging of national
laboratories’ early-stage R&D

Optimizing capabilities needed to develop
H, storage affordable technologies for
and production, delivery, and end
distribution use applications.

https://www.hydrogen.energy.gov/pdfs/review18/tv045_ruth_2018_o.pdf
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Use H2NEW
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https://www.nrel.gov/docs/fy210sti/77610.pdf

. $3.00 « Refining, Ammonia,
Transportation Biofuels LDV, MDV, and HDV
$2.50 B b Metals /
Power . S 2% Ammonia
- Synthetic = T
Generation y & $2.00 ‘{/f‘g Synthetic HC
8 T ._+(Methanol) Natural Gas,
2 «— Metals Metals
£ 8150 [ESSR] b3
Upgrading % )
. ]
Qil/ 5, §1.00 |
Biomass T
Reference
$0.50 ~ — —~R&D Advances + Infrastructure s |
--------- Low NG Resource / High NG Price Ef::‘;’l;rage
Ammonia/ $0.00 :
Fertilizer 0 20 40 60 80
Hydrogen Demand (Million MT/yr)
Figure 24. Aggregated demand curves for H2@Scale scenarios
Metals . .
Production * Transportation and Industry are strongest economic

sectors (also difficult to decarbonize)

Chemical/industria * Many of the processes are or could be electrochemical
Heat/Distributed * Difficult or impossible to fully electrify
ower
* R&D needs are significant
https://www.energy-gov/eere/fuelcells/h2-scale — Fuel Cells (M2FCT), NH3, Steel, burners/turbines
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Move/Store
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Energy Transmission Infrastructure H2NEW
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Map of U.S. interstate and intrastate natural gas pipelines

Electric Grid
Infrastructure

Heat/Distributed
Power

Infrastructure

United States
transmission grid
Source: FEMA

Legend

—— interstate pipelines
— intrastate pipelines

Source: U.S. Energy Information Administration, About U.S. Natural Gas Pipelines

* Hydrogen has a very limited infrastructure (due to scale and selective use).
— Current H2 prices dominated by storage and distribution (LDV CA)

e Electricity and natural gas have extensive infrastructural investments.
* Similar maps, much different energy/cost, permitting challenges
* Hydrogen pipeline analogous to natural gas

H2NEW: Hydrogen from Next-generation Electrolyzers of Water 19




Natural gas as the nearest H2 parallel H2NEW
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Amortized Transmission Costs

$50 | mmm Amortized Operating Cost .
mmm Amortized Capital Cost o * Hydrogen perhaps ~“30% move expensive to

$40 - ’ move than natural gas.
E » ~1/3" volumetric energy density, ~1/3"
S %307 viscosity.
2 204 * Additional materials compatibility limitations
“ * Particularly relevant at large scales and long

$10 1 distances

. $367 @97
77 Istes ; 2.24 :
N ;

QOil EtOH MeOH Nat Gas H,  Electrical
Pipeline Pipeline Pipeline Pipeline pjpeline

https://www.hydrogen.energy.gov/pdfs/review18/pd102_james_2018_p.pdf
pA]
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Location of Generation vs. Demand H2NEW
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Supply Demand
. RN T R =N e :
. : o ,/' " 2
@ < ...‘ s Sl . ¥ o)
e @F8e . o i a5 &
N I dwins e A ‘ o AN
oo N ".-n & i ] “, ey Ty o S AL
S T, DL ST (Y
g . e ° : el . i i, - @.L% 3
Source Hydrogen (MMT)
® Electrolysis  m Refineries Methanol - £0.01 1.50 Technology Type Nameplate Capacity (MMT/yr)
= SMR Metals = Non-LDV 0.50 >2.00 = Electrolysis GH2 Truck 0.00 1.50
m LDV ® Ammonia 1.00 SMR LH2 Train 0.50 2.00
= GH2 Pipeline = LH2 Truck 1.00 =230

* Hydrogen has a very limited infrastructure (due to scale and selective use).

e Electricity and natural gas have extensive infrastructural investments.

* Similar maps, much different energy/cost, permitting challenges

* Hydrogen pipeline analogous to natural gas
https://www.hydrogen.energy.gov/pdfs/review18/tv045 ruth_2018_o.pdf
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H2NEW : H2 from Next-generation Electrolyzers of HsNEW

Wate r U.S. DEPARTMENT OF ENERGY
A comprehensive, concerted effort National Lab Consortium Team | Clear, well-defined stack metrics to
focused on overcoming technical barriers 'S N RE L "i \ guide efforts.
to enable affordable, reliable & efficient S oot e ;{g&% — .
electrolyzers to achieve <$2/kg H, A S 7 DU BT A S S 1 A S
» Launched in Oct 2020 rgoNNe. .cn o <] LTE PEM HTE
. FY 21, 22: $10M/yr (PEM 75%, 0-SOEC o Alamos MRS Northwest Capital Cost $100/kW $100/kW

os Alam :

) | TRty | || Elect. Efficency | 0 0ol 98% at 1S
« FY 23-27: $28M/yr ($12M PEM, $6M Liquid ATIONAL (LHV) ° A/cm?

Alkaline, $10M O-SOEC) OAK RIDGE rECHNOLocv

’ National Laboratory TLJESSkaS Lifetime 80,000 hr 60,000 hr
Utilize combination of world-class . . o ...
Leverages and connects to other DOE experimental, analytical, and modeling Dl:JrabIIIty/IIfetlme is most critical, initial,
efforts tools P primary focus of HZNEW
e < (\

Materials Integration Focu!

+ Limited fundamental knowledge of degradation
mechanisms, under appropriate operating
strategies.

» $450M in electrolysis FOA awards under

negotiation, much of which will be supported by
P Perrormanc< U ESRCR R H2NEW core lab team.

FOA/
CRADA
Seedlings
FOA

rer ing and
& Durability
Targeted, focused effort to
enable

Scale-up
Roll to Roll (R2R)
consortium,
leveraging AMO
Electrode fabrication,
diagnostics

5 year aggressive target
Includes understanding
durability and test protocol
development

Materials R&D Focus
HydroGEN 2.0
(Lower TRL & core
capabilities)
HTE, PEC, AEME, STCH

@

H2NEW: Hydrogen from Next-generation Electrolyzers of Water



Stack Costs (PEM Centric to date) HaNEW
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$400
m Assembly ® Frame 1000 80P components
Nameplate = 1 MW
$350 m Anode GDL W Cathode GDL a7 " == clecricalsoP
Sl BN Piping, instrumentation, housing
$350 M Bipolar Plate CCM 8: W Hydrogen-side BOP
7 = Toermal management
$35 Stack Targets Status  Mid  Ult. S —ster supply
300 Cell (A/lcm2@1.9V) 2.0 25 30 3 Stack components

$ o
_ Efficiency (%) 66 68 70 g = e o tack
E $55 Lifetime (khr) 60 70 80 E m Cipola s an Flow Fieds
& $250 Degradation (mV/khr) 32 275 225 s o= Ocyoen Evolution Resction Elecrad
E capita| Cost (s/kw) 350 200 100 g Hydrogen Evolution Reaction Electrode
o PGM loading (mg/cm?) 3] 1 0.5 @
o
= $200 $68 $200 @ Stack costs
8
g s 102 10° 10°
o Annual electrolysis capacity production rate (X%
< $150 $37 g G
i
. . $100

$100 $37

Modeling of stack costs show
$50 strongest levers are:
l 1. Increased efficiency/
$0 ;
Current 2.5A/cm2 1mg/cm2 Scale-up Midterm 3 A/cm2 0.5 Further Ultimate Current denSIty
Target mg/cm2  Scale-up  Target 2. Decreased PGM loading
3. Scale-up
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Targeting Research Areas H2NEW
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e Current density and catalyst
loading are primary cost drivers

Anode catalyst loading (0.05 | 2 | 4 mg/cm?

* Membrane thickness also ] Current density (4] 2 | 1.5 Alcm?)
enables increased current
denSIty b Percent change in membrane cost (-50 | 0 | F-50%)

* Because low cost electrons are ]
a requirement, lower premium
|S placed on EffICiency. b Bipolar plate thickness (0.05 | 0.15 | 0.5 cm

Cathode catalyst loading (0.1 | 1 | 2 mg/cm?)

Bipolar plate material (stainless steel | titanjium)

—40 —20 0 20 40

Change in stack cost (z?jf,’$)
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HTE In-Person

Thank you (and others) Meeting PNAL,

March 4-6, 2024

H2NEW
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